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Control Systems

Introduction, and Modeling in Frequency Domain



CONTROL SYSTEM DEFINITION

A control sys,'tem consists of subsystems and processes (or plants) assembled for the
purpose of obtaining a desired output with desired performance, given a specified

mput. Figure 1.1 shows a control system in its simplest form, where the
mput represents a desired output.

Input; stimulus Control | Output: response

Desired response system | Actual response

FIGURE 1.1 Simplified description of a
control system

For example, consider an elevator.

Input command 4

=

- e
Transient

TR Steady-state Steady-state
response ermor

Elevator response

Elevator location (floor)

FIGURE 1.2 Elevator response

Time




ADVANTAGES OF CONTROL SYSTEMS

We build control systems for four primary reasons:
l. Power amphfication
2. Remote control
3. Convenience of input form
4. Compensation for disturbances




SYSTEM CONFIGURATIONS

In this section, we discuss two major configurations of control systems: open loop
and closed loop.

Open-Loop Systems

Disturhance 1 Disturbance
Inul Ingut. ++ Process ++ e e
o
Rz[m_h transducer [ ] Contmlier é or Plant é ControBad
Summing Summing vaniahla
juncticn janction
i

Closed-Loop (Feedback Control) Systems

Emor

o - "
Actmting Disturbance | Thsturbance 2
signal Ol

Input Toput + 5 Bromex:: | b u? 5
Mn« it (X Coatrolles or Plant Controlled

PR iy Summing Summing vasiahl

J'.'m!ﬂ junction jumction
Output.
tramscucer

or Sensor




THE DESIGN PROCESS
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FIGURE 111 The control system design prooess
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THE DESIGN PROCESS

TABLE 1.1 Test waveforms used in control systems

Impai Fuanciion Desoription Skeich Use
Impulse A1) () = oo forll— <5 =< &+ M Transient responss
=l clz=cwhers Modciing
(-
f Afr)dr = 1 &
m—
1 a= I
Step (r] wir) = 1 for £ > @ S Transient responss
— D D g St ady-state emmor
i
Ramp o} sy =i fors =0 Sk St ady-stat e cmor

=10 elzswhere

)
Al

Parabala %F“fﬂ %J‘Iﬂti‘] =%‘Im: =0 _FJ.'!} St pdy-state eTror
=1 elzcwhere
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MODELING IN THE FREQUENCY DOMAIN

Input
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———— | ESyslem |—=

i
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iz}

Inprut

Dt put

—— = Subsysiem |—e=| Subsysicm —e| Subsysiem ——e=

FIGURE 2.1 a Block diagram it

o)

representaton of a system; b

block diagram representation &)
of an interconnection of Mote: The input, ri), stands For reference inpri.
subsystoms The output. o), stands for conrrolied variable,
55 §tep respc?nse
To understand system performance, a 12 Overshool sy |

mathematical model of the plant is

| I

required 2
This will eventually allow us to design "
control systems to achieve a particular
specification =
0

2 4 6 8 10
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LAPLACE TRANSFORM REVIEW

F(s) = [: f(t)e ¥dr

or

F(s) = Laplace transform of f{(t) = £[ f(2)]

The defining equation above 1s also known as the one-
sided Laplace transform, as the integration 1s
evaluated from ¢ =0 to oo.



LAPLACE TABLE

ltem no. f(t) F(s)
1. 5(7) 1
2. u(?) %
3, fu(t) Siz
4, u) %
5. e u(h) - i ~
6. sin wru(?) Sﬂ%
7. cos wiu(?) > f —




LAPLACE TABLE

A ey Ex ornple 2.3

Laplace Transform Solution of a Differential Equation
PROBLEM: (Given the following differential eguation, solve for wir) if all indvial
conditions are zero. [Tse the Laplace trans formm.

a® o
Ef—+ ]2..1_{ + 32y = 3251} (2. 14}

SOLUTIOMN: Substitute the corresponding Fis) for each term in Eqg. (2.14), using
Item 2 im Table 2.1, Ttems 7 and 8 in Tabhle 22 and the mitial conditions of w(rh amd
dy(tdfcdt given by wiil—) =0 and -} = 0. respectivelvxy Hence, the Laplace
transform of Eg. (2.14) is

S Y)Y + 125 ¥ (s) + 32¥ (x) =¥ (Z.15)

Solving for the response. ¥Fish vields

32 . 32
(s 125 +32) s(s + 4)s + B)

Fla) = (2.16)
To salwe for y(£). we notice that Eqg. (2.16) does not match any of the terms in Table

2.1. Thus, we form the partial-fraction expansion of the right-hand term and match
ceach of the resulfing erms withh Fis) in Table 2.1. Therefore,

32 Ky K2 Ka
Y&y = e e Tt o+ w15 (2707)
whers, from Eq. (2.13).,
32
G e TR ) et
32
33
Ky — ey L""a1 =1 (2 18c)
Hermoe,
1 2 1
bl R T ) el

Since each of the three component parts of Eq. (219) is represented as an
F(s) in Table 2.1, w(r)is thie sum of the inverse Laplace transforms of each term.,
Hernwoe |

) = (1 — Ze™ 4 o~ B r) (220}

10




TRANSFER FUNCTION

T.F of LTI system is defined as the Laplace transform of the impulse
response, with all the initial condition set to zero

¥ & i 1
Let us begin by wnling a general nth-order, linear, lime-invanant differential
eqquation,

d"cir) d" el t) T d"rit) d" A1)
il g dj'i'-' g1 'r"-“ - e ﬂjll'.l_.rr—' JI}“'F.I |I.'m :WI‘ LR |Ii'|:|r|||':'
TRk
m m—1 :
R(s) (b, s™+ b, 1s"1+...4+ by) C(s)
fii- 1 -
mn H— i e
(aps Ap—15 + tap)

1



LAPLACE TABLE
A £xample 2.4

Transfer Function for a Differential Equation
PROBLEM: Find the transfer function represented by

% + 2e(1) = 1) (2.55)

SOLUTION: Takming the Laplace transform of both sides, assuming zero imtial
condiions, we have

2C(2) 4+ 2C(s) = R{x) (2.56)
The transfer function, Cr(s), 18

s
Crix) —m—m (2.57)

12




LAPLACE TABLE

G example 2.5 D

Trylt 26

ke the follwing MATLAR
and Symbalic Math Tool box
statemen s o help you get
Eq. {2.60)

SYmS =

C= ) mx{=+2]
C=ilaplacaiC)

Trylt 27

The the following MATLAB
siatemenis o plot By (260
foor 1 froom (i 1 gaf imbervals of
TN

c=0:0.01:Xf
plot_ .
{Edlf2 =1 2% mep { -2*1]})

System Response from the Transfer Function

PROBLEM: Use the resull of Example 2.4 to find the response, ¢{f) Lo an input,
rit) = ul1), a unit step, mssuming zero initial conditions.

SOLUTION: To solve the problem, we use Eq. (2.54), where Gs) = 1/(s + 2) as
foundin Example 24, Since r(t) = w(t), R(s) = 1/s, from Table 2. 1. Since the initial
conditions are zero,

Cls) = R{1)G(z) = TRy (2.58)
Expanding by partial fractions, we get
L A2
) g1 2:9)
Finally, taking the inverse Laplace transform of each term yields
T g
c{f) =5 - ze (2.60)

13




ELECTRICAL NETWORK TRANSFER
FUNCTION

In this section, we formally apply the transfer function to
the mathematical modeling of electric circuits including
passive networks

Equivalent circuits for the electric networks that we work
with first consist of three passive linear components:
resistors, capacitors, and inductors.

We now combine electrical components into circuits,
decide on the input and output, and find the transfer
function. Our guiding principles are Kirchhoff s laws.

14



ELECTRICAL NETWORK TRANSFER
FUNCTION

Table 2.3 Voltage-current, voltage-charge,

and Impedance relationships for
capacitors, resistors, and inductors
‘{ E Wt) = %L i(T)dr  i(f) = C% wt) = %q(t) é Cs
Capacitor
J\/\/\/, = a5 1 _ o dg(h) 1
w(f) = Ri(f) i(t) = =w(1) W) = R—= R —-=G
Resistor R d R
_/_O_O_OU\_ _ di(t) o1 L d(r) 1
(f) = L— ()= = | ndr  Wt) = L— L —
Inductor ' a | L J l ' ' at q Ls
Note: The following set of symbols and units is used throughout this book: w(f) = V (volts), i(t) = A (amps),
q(f) = Q (coulombs), C = F (farads), R = () (ohms), G = U (mhos), L = H (henries). 15



MODELING ELECTRICAL ELEMENT

Resistance Inductance Capacitance
i(1) i(1) i(1)
v(r) ‘ % R v(r) ‘ % L v(t)l :r C
di(1) I
v(1) = Ri(r) v(1)=L v(1) = v(0) +— [i(t)dr
dt %

b vneom  J c@=00 P co=0

Vis) _ Vi) _ Vis)_ 1 16
I(s) I(s) I(s) sC F&




MODELING — KIRCHHOFF’S VOLTAGE &

CURRENT LAWS

(Y eample 2. D

Transfer Function—Single Loop via the Differential Equation

PROBLEM: Find the transfer function relating the capacitor voltage, Vio(s), to
the input voltage, Vis) in Figure 23,

SOLUTION: In any problem, the designer must first decide what the input and
_¥elll putput should be. In this network, several variables could have been chosen tobe
the output —for example, the inductor voltage, the capacitor voltage, the resistor
voltage, or the current The problem statement, however, s clear in this cass: We
FIGURE 23 RLC network are Lo treat the capacitor voltage as the outputand the applied voltage as the input

Summing the voltages around the loop assuming zero initial conditions,
vields the integro-differential equation for this network as

wirk

it} : R
L & 1 R:[:HL_[J flrhdr = w(1) [2.61)
Changing variables from current Lo charge using iir) = dg(1)/dr vields
&gl dgit) 1
—glt)=v 2
L 7 + R 2 C‘ﬂ” wit} (2.62)
From the voltage-charge relationship for a capacitor in Table 23,
glt) = Cvelt) (2.63)
Substituting Eq. (2.63) into Eq. (2.62) vields
d*vell) dvelt) _
LT R + RC pr> + velt) = wit) (2.64)

Taking the Laplace transform assuning zero initial conditions, rearranging (erms,
and simplifying yields Vish = Veis)
(LCS + RCs +1)Ve(s) = V(s) (2.65) ’3"%“1%‘_"
Solving for the transfer function, Vo (s)/V{s), we obiain
AGURE 2.4 Block diagram of
Viels) _ 1/ LC (2.66) series K LC electrical network
.i"l:.'i:' =5 o RI I o
5+ I.'. +-E

as shown in Figure 2.4

11



MODELING — KIRCHHOFF’S VOLTAGE &

CURRENT LAWS
I - 2

Transfer Function—Inverting Operational Amplifier Circuit

PROBLEM: Find the transfer function, V,(s)/Vi(s}, for the cromi given in
Figure 2.11.

R= G
120k 0.1 pF

FIGURE 1.11 Inverting operational
amplifier circuit for Example 2.14

SOLUTION: The transfer function of the operational amplifier circwit s given by
Eq. (2.97). Since the admittances of parallel components add, &, (1) is the recipro-
cal of the sum of the admittances or

1 1 360 « 10°
LalF)= Vg 2 ] "zm;\c 1 138}
Cis4+— 5610784 ——m— T
VR 360 = 10°
For £a{4) the impedances add, or
1 107
Ziff) = Rad =220 % 1P 4 — (2.99)
Cax 5
Substituting Eqgs. (2.98) and (299) into Eq. (2.97) and simplifying. we get
4 2 2
Vals) — 13328 + 45955 4 22.55 (2.100)

Vils) E

The resulting circuit iscalled a PID controller and can be used to improve the
performance of a control sysiem. We explore this possibility further in Chapter 9.

18



MODELING — SUMMARY (ELECTRICAL
SYSTEM)

* Modeling
— Modeling 1s an important task!
— Mathematical model
— Transfer function
— Modeling of electrical systems
» Next, modeling of mechanical systems

19




TRANSLATIONAL MECHANICAL SYSTEM
T.F

The motion of Mechanical elements can be described 1n
various dimensions as translational, rotational, or
combinations of both.

Mechanical systems, like electrical systems have three passive
linear components.

Two of them, the spring and the mass, are energy-storage
elements; one of them, the viscous damper, dissipate energy.

The motion of translation i1s defined as a motion that takes
place along a straight or curved path. The variables that are
used to describe translational motion are acceleration,
velocity, and displacement. 20




TRANSLATIONAL MECHANICAL SYSTEM
T.F

Newton's law of motion states that the algebraic sum of
external forces acting on a rigid body 1in a given
direction 1s equal to the product of the mass of the
body and its acceleration in the same direction. The
law can be expressed as

z Forces = Ma

21




TRANSLATIONAL MECHANICAL SYSTEM

Table 2.4 Force-

velocity, force-
displacement, and
Impedance
translational
relationships for
springs, Viscous

dampers, and mass

T.F

Force-
displacement

Force-
velocity

Impedance

Component Zy(s) = F(s)/X(s)

Spring

%/W . f) = wrydr  f(t) = Kx(f) K

Viscous damper

—— Xx({)
; ; ; dx(t :
% fo  J0=h0  f0=5T fis
&

Mass
— .\'“) 5

N1 () o dox() 5
=y | gt = MT fly=M 7 Ms

Note: The following set of symbols and units is used throughout this book: f(r) = N
(newtons), x(1) = m (meters), W7) = m/ 's (meters/second), K = N/m m (newtons/ ‘meter), f, =
N-s/m (newton-seconds/ meter), M = kg (kilograms = newton-seconds® / meter).

22



MODELING-MECHANICAL ELEMENTS

Mass Spring Damper

f) § x() x(1) f@) " x(r)

f()

f(t)y=M Xx(1) f(t)=K x(1) f(t)=B x(t)

x(0)=0
! | (0)=0 | | § =0
F(s)=Ms>X(s) F(s)=KX(s) F(s)= BsX(s)

23




MODELING — SPRING-MASS-DAMPER
SYSTEMS

M x(t)+ Bx(t)+ Kx(t) = f ()

24



MODELING — FREE BoOoDY DIAGRAM

_4%

S (1) [fg(t) Se(t)  fp(1)
1 1
J_ M
K B l
| L'-l x(r) FE x(1)

fe@)=Kx(r)  fu(t)=Bx(1)

Note: x() represents the displacement change for spring resting position
Using Newton's Law: F=M X

M i(t)= f(t)— fo(t)— f, ()= f(t)— Kx(t)— Bx(t)
M i(t) + Kx(t) + Bx(t)= f(1) 29




MODELING — SPRING-MASS-DAMPER
SYSTEM

BT

|
FA{S x(r)

- Equation of motion

M X(r)+ Bx(r)+ Kx(r) = f (1)

« By Laplace transform (with zero initial conditions),

1
X (s) = — _F(s) 26
Ms™ + Bs + K (2" order system)




MODELING — SPRING-MASS-DAMPER

SYSTEM
EE—— Example 216 J—

Transfer Function—One Equation of Motion

K —'—-— kT

Fix) 1 Xish
M&+ 5+ K
i FIGURE 2.15 & Mass spring,
I and damper system: b block
{a) L1:] diagram

PROBLEM: Find the transfer function, X'(£),/F(s), for the svstem of Fgure 2.15(a).

SOLUTION: Begin the solution by drawing the free-body diagram shown in Figure
2.16{a). Place on the mass all forces felt by the mass. We assume the mass is
traveling toward the fAght. Thus, only the applied force points (o the right; all other
forces impede the motion and act to oppose il. Hence, the spring, viscous damper,
and the force due to acceleration point to the left

We now write the differential equation of motion using Newton's law Lo sum
to zero all of the forces shown on the mass in Figure 2.16(a):

2
M%-; I,.dj:} + Kx(t) = i) (2.108)
—|—-—.ur| —|—--.1|.’|.1'-

Fair) ———j T EX{x) -]

FEX(x) —-—
FIGURE L1716 a Free-body

diagram of mass spring, and
damper system:; b trans-
{a) (b formed frec-body diagmam

MAZX(5) -

Taking the Laplace transform, sssuming zero indtial conditions,

MsEX () + faX(s) + KX(5) = Fis) {2.109)

or
(Ms®  fox + K)X(5) = Fiz) (2110} 21

Solving for the transfer function vields

Xis) 1 (2111

) = T MR AT K

which is represented in Figure 2.15(k).




MODELING — SPRING-MASS-DAMPER
SYSTEM

(N example 2.17

Transfer Function—Two Degrees of Freedom

e[ ]
1 f"l‘l

£l

! Yoix
Fixl .[wa_:x!]. A
o]

PROBLEM: Find the transfer function, Xs(x)/F(s), for the system of Fipure 2.17(a).

AGURE 2.17 a Two-
degrees-of-freedom
translational
mechanical system;®
b block diagram

28



MODELING — SPRING-MASS-DAMPER
SYSTEM

SO LUTHOM = The systerm has pwo degrees of freedom, Ssince each mass can be mosed
i the horzontal direction while the other is held still. Thas, Two Ssimmuliorssons
egualions Of motion will be reguired Do describe the system. The Dwao cguiaiions
ocome from free-body diagrams of cach mass. Superposition is used o draw the free-
body diagrams. For example, the forces on Ad; are diss oo (1) s own oo tion s
L2 the motion of Adfz ransmitved o Ady; throwgh The sysierm . We willl consider ithese
DA SOLERCES Separabely

If we holkd Adf> sl and move Ay o the right . woe see the forces shoswwn i
Figure 2. 18(a). If we hold Af: stll and oeowve Az 2o the right. we see the forces show n
in Fgure Z.18(&F). The total force on Ady is the superpositicon. or sum, of the forces
jes tdiscussed. This resultis shown im Figure 2.1 8(c). For Ay wwe procesed in asiomilar
Tashuorn: Frst we muove Adz Lo the right wwhile holding Ay still then we mmowe Ady Lo
he right and hold Af: still. For easch case we evaloate the forces omn Az The resulls
appcar in Figure 2 19

o —

o NN S St

i )

XA
X5

A TN LY ———]

o

ARy - KRN b ——]
FIGURE 218 m@m Forocs on L o o R
Ad, dhaue onlby bo muotion of M s
b foross om Ay dus only o
motion of Af;; e, all forces
on Ay

L e p—

A S p—

A = R A ——-——]
FIGURE 2.1% = Forces oo
Afo chue onby o ot o of Aot Wy ™+ Mo, BN D
b. forces on M duc only to
motion of Ay e all forces X d
o Sdfo L)

The Laplace transform of the eguations of motion can meow be writben fooon
Figures 2. 18(c) and 2. 19%c)h as

[Aera 20, + fouks 4+ (Ka 4+ K2)] Xa(s) — (s + K2 )X 202} — Flx) (Z.118a)

— s+ 2 X9 (5} + [Af2s™ - (e + B+ (K2 + Ka)]Xz2(s) = O (2. 118k}
From this, the transfer function, Xa(s )/ Fis). is

(s _ s+ K2)
Fis) — @ =g el

as shown in Fgure Z.17(k) where

S [Afas® + (F, +Fn)s + (K + K2} — (s + K2}
— (s + K3} [Af2s® + (F + Fo )5 + (K2 + Ka))




MODELING — SPRING-MASS-DAMPER
SYSTEM

Sum of
impedances
connected

to the motion
at x

Sum of
impedances
between

x; and x»2

Xy(s) —

X, (s) +

Sum of
impedances
between

x1 and x-

Sum of
impedances
connected
to the motion
at x»

Sum of
Xas) = |: applied fDl’C-E'.E] (2.120a)

at x;

Sum of
Xas) = [appli&df&rces] (2.120b)

at x»



MODELING — SPRING-MASS-DAMPER
SYSTEM

G sample 213 D

Equations of Motion by Inspection

PROBLEM: Write, but do not solve, the equations of motion for the mechanical
network of Figure 2.20.

5

K,

A
gUGG TS FIGURE 2.20 Three-
2 : E J degrees-of-freedom
e e L e L o e e e e e e s e S translational mechanical

fv,/l f, ) system




MODELING — SPRING-MASS-DAMPER
SYSTEM

Sum of - =

Sum of
g e impedances
connected Kadsy — XKoals)
r between
to the motion
A and . ]
at xy
- £ -
hn?)edazces > ol
—_ A Xa(s) — |:app11ed fcxroes]
at xy
aq and axa
Similarly, for Ad> and Adfz, respectively,
Sum of . = 0;3
impedances F
—_ A=) + connected Ao (=)
between -
to the motion
a1 and x
at x>
Surm of |
impedances = o
— = i A ax(s) = I:apphed l:‘crrc&s]
at x-
e and AT
Sum of [ Sum of
impedances impedances
— A — A
between 1(=) between 24(=)
ap and as | a2 and xs
Surm of
impedances Sum of
-+ connected Xa(x) — applied forces
to the motion at xs

at xx

32




MODELING — SPRING-MASS-DAMPER
SYSTEM

for m,
[Mys* + (f,,, +1,,)5 + (K1 + K3)| X1 (5) — K2 X3 (s) — f,,5X3(s) = 0
for M-,

KX (s) + [Mas® + (f,, +1,,)5 + K2] Xa(s) — £, 5X3(s) = F(s)

for M.,
= f.5X1(s) = f, s Xa(s) + [Mssz +(f,, + £, )5]Xa(s) =0
33




EXERCISE

(N skill-Assessment Exercise 2.5 NN

PROBLEM: Find the tmnsfer function, &{s) = Xafs)/F(x), for the tmnshtional
mechanical system shown in Figure 221,

FIGURE 2.21  Trams latiomal
mechanical sysiem for Skill
Amesiment Evencie 2 8

Iz+1

ANSWER: =
) s+ TP +55+1)

The complete solution & at www.wileycom/college/mise.

ol




ROTATIONAL MECHANICAL SYSTEM
TRANSFER FUNCTIONS

TABLE 2.5 Torgue-angular velocity, torque-angular displacement, and impedance rotational
relationships for springs, viscous dampers, and inertia

Torgue-angular Torque-angular Impedence
Component velocity displacement Zy(s) = T(5)/8(s)
Tin &)
Spring f LA . N
rmﬁﬁﬂ.l | T{t) = K [ye(t)dr T{r) = Ka(r) K
K’ l‘\. II‘.
Viscous 1) a(1)
damper ~, ~, .
— Y T(¢) = Dool1) T(t)=D {i” Ds
D%\
TN @i
Inertia /™y f'r-‘ cﬁ,ﬂ{[] CFH{!'I:I
N ' T =17 T()=J Is
:‘5'. . (1) = (1) pr s

Note: The following set of symbols and units is used throughout this boole Tir) — N-m (newton-meters ),
#(1) — radradians), w(t) — rad/s{radians’second), K — N-m/rad(newton- meters/radian), [} — N-m-s'rad

(newton- meters-seconds/radian). J — kg-m”|kilograms-meters®

newton-meters-seconds” fradian ).



ROTATIONAL MECHANICAL SYSTEM
TRANSFER FUNCTIONS

right.

Tit) 8,(1) 8441)

Example 219 D,

Transfer Function—Two Equations of Motion

Tin) &4(0)

o

(<)

PROBLEM: Find the transfer function, & (s)/ T (s), for the rotational system shown
in Figure 2.22(a). The rod is supported by bearings at either end and is undergoing
torsion. A torque is applied at the left, and the displacement is measured at the

()

FIGUREZ2.22 a.Physical
system; b, schematic;
¢. block diagram




Trylt 2.9

Use the following MATLAB
and Symbolic Math Toolbox
statements to help you get
Eq. (2.128).

ayms s JIDIETJZD2...
thetal theta?
A=[(J1*824D1*2+K) —K
~K [(J2*a"2+00*s+K) |;
B=[thetal
theta];
c=[T
0]z
BE=imv (R)*C;
thetal=8(2);
‘thetal!

prettylthetal)

ROTATIONAL MECHANICAL SYSTEM
TRANSFER FUNCTIONS

(/15 + D15 + K)6i(s) — Kéa(s) = T(s) (2.1272)
—K#(5) + {..i"gs2 4+ Das + K)ais)=0 (2.127b)
from which the required transfer function is found to be
fis) K iy
TG) A (2.128)
as shown in Figure 2.22(c), where
& {J[Sz i DIS B K} —K
- K (J2s> + Das + K)
Notice that Eq. (2.127) have that now well-known form
; Sum of Sum of
impedances i Sum of
connected | & (5) — hl::tween th(s) = | applied torques (2.129a)
to the motion o\ and 6 at &y
H.l\@l ! 2
g ¢ Sum of
Ay impedances Sum of
impedances |, d |62(s) = | applied torques | (2.129b
gl [ b1(s) + connecte h(5) = | applied torques i )
to the motion at s
& and &»
att,

31



ROTATIONAL MECHANICAL SYSTEM
TRANSFER FUNCTIONS

G ol 220 D

Equations of Motion By Inspection

PROBLEM: Write, but do not solve, the Laplace transform of the equations of
motion for the system shown in Figure 225.

eylr) Tin &t}

i)
. Y Y A
FIGURE 2.25 Three-degrees- I [ -~ | |
of-freedom rotational GGE{] !,n % }—E
D, \ \ . D, *~ D,

system




ROTATIONAL MECHANICAL SYSTEM

TRANSFER FUNCTIONS

SOLUTHOMN:
mesh egquations:

Sum of
© Sum of

impedances =
impedances
connected Byis) — Ga(x)
3 between
to the motion
& and &>
at &y
Sum of
impedances
o v} =
between 2=} |:
&y and &4
Sum of
S i da{rjlct:s
impedances i
EF ay(s) + connaected Ea(x)
between 2
to the motion
& and &
at &s
Sum of
impedances
= £ =
between FLx) |:
& and &4
Sum of Sum of
impedances impedances
—_ & — o
between (=) between =2(=)
& and & &> and &

Sum of

impedances
— connected sy =
to the motion
at &y
Hence,
(F157 + Days + KM (x) — K6>(5)

— K& (5} +(T25" 4 Doxs 4+ K)8s(5)

The equations will take on the following form, similar to electrical

(2.130a)

applied torques

Sum of :|
at &,

(2.130b})

Sum of
applied turques]
at &

{2.130c)
Sum of
applied torgques

at &x

—0Ex(s) = T{s5)
— D ssa({x) = 0O

— 06 () — D5t (5) +(F35° + Daxs 4+ Dax)oa(s) = O

(z.131a.b,c)




TRANSFER FUNCTIONS FOR SYSTEMS WITH GEARS

Ty &yl HI o
drive

FIGURE 2.27 A gear system

From Figure 2.27, as the gears turn, the distance traveled along each gear’s
circumference 1s the same. Thus,

r6 = raba (2.132)
or
Son N (2.133)
6

- | - 40




RELATIONSHIP BETWEEN INPUT TORQUE
AND DELIVERED TORQUE

What 1s the relationship between the input torque, Ty, and the delivered
torque, 757 If we assume the gears are [ossless, that is they do not absorb or store energy,

] N, th Ty N, 5
() (B}

FIGURE 2.28 Transter functions for a. angular
displacement in lossless gears and b. torgue in
lossless gears

Ta 6 N>
17161 = Tath T_:E:F
1 2 iv]

1



EXAMPLE

Ty 840
Ny

FIGURE 2.29 a. Rotational
system driven by gears;

b. equivalent system at the
output after reflection of input
torque: ¢. equivalent system at
the input after reflection of
impedances

(J5* + Ds + K)a(s) = T1(s) "hi,f

(I +D3+K]ﬁ—;31(s) =T {s)%

[J (%) zs’ +D (%) zs +K (f—r;)z] 61(s) = Ti(s)

’ Genera]iz:i;zg the results, we can make the following statement: Rotational
mechanical impedances can be reflected through gear trains by multiplying the
mechanical impedance by the ratio

Number of teeth of + *

a2

gear on destination shaft

Number of teeth of
gear on source




EXAMPLE
N example 221 D

Transfer Function—System with Lossless Gears
PROBLEM: Find the transfer function, #,(s) /T, (s), for the system of Figure 2.30(a).

Ty 8400
Tyis) NafNy B4(5)
.| -
J2+Ds+ K,
(B} tc)
FIGURE230 a Rotational mechanical system with gears; b. system after reflection of torques and impedances to the output
shaft; c. block diagram
SOLUTION:

Let us first reflect the impedances (J; and [, ) and torque (1) on the input
shaft to the output as shown in Figure 2.30(b), where the impedances are reflected
by (N2/N1)? and the torque is reflected by (N2/N;). The equation of motion can
now be written as N

(Jes” + D5+ K. )éa(s) = Ti(s) N_z (2.139)
1
where
N2\? N>\ ?
.fe—f](h—rl) + J; D‘_D‘(F]) +Ds; K.=K>
Solving for #4(s)/ T (s), the transfer function is found to be 43
62(s) N3 /N,
= = 2.1
e —— Gis) T:s) Js52+Ds+ K, (2.140) ———

as shown in Fgure 2.30(c).




GEAR TRAIN

In order to eliminate gears with large radii, a gear train is used
to implement large gear ratios by cascading smaller gear ratios. A
schematic diagram of a gear train is shown in Figure 2.31. Next to
each rotation, the angular displacement relative to #; has been
calculated. From Figure 2.31,

_ NiNiNs

%= NN

fy (2.141)

FIGURE 2.31 Gear train




G example 2.2 D

Transfer Function—Gears with Loss

GEAR TRAIN

=

PROBLEM: Find the transfer function, 6;(s) /7' (s), for the system of Figure 2.32(a).

Ty a4l

]k e

J 52+ Dx

Ji. Dy
N, N, 1 2
Dy 1 Iy Fo=dy+(Fa+ I3 (%:) +(Ja+ Jg) (ﬁlﬁl)
Ny 7 [
D¢=D! +D‘1 e ] —
NJ
ta) ()
(.5 + D.s5)61(s) = Ta(s)
where
oty Garii () + e Y’
e TN,
and
N 2
De =D+ D (J\_é)
The transfer function is
_b(s) 1

= Gb)

" Ti(s) Jes2+D.s

i)

thy(5)

FIGURE 2.32

u. System using a gear
train; b. equivalent
system at the input;

¢. block diagram

43




ELECTROMECHANICAL SYSTEM TRANSFER FUNCTION

Fixed
R Ea freld
+

Laah
FIGURE 2.35 DC motor: a. schematic;'® b. block diagram

E (s) Bls)

Gy ———-

e

In Figure 2.35(a) a magnetic field is developed by stationary permanent
magnets or a stationary electromagnet called the fixed field A rotating circuit
called the armature, through which current i,(f) flows, passes through this magnetic
field at right angles and feels a force, F = Bli,(t), where B is the magnetic field
strength and [ is the length of the conductor. The resulting torque turns the rofor, the
rotating member of the motor.

There is another phenomenon that occurs in the motor: A conductor moving at
right angles to a magnetic field generates a voltage at the terminals of the conductor
equal to e = Blv, where ¢ is the voltage and v is the velocity of the conductor normal
to the magnetic field. Since the current-carrying ammature is rotating in a magnetic
field, its voltage is proportional to speed. Thus,

L

vp(t) = Kp

dbm (1)
dt



ELECTROMECHANICAL SYSTEM TRANSFER FUNCTION

We call vp(t) the back electromotive force (back emf); K; is a constant of
proportionality called the back emf constant; and dé,,(t)/dt = w,,(t) is the angular
velocity of the motor. Taking the Laplace transform, we get

Vi(s) = Kpsb,,(s)

The relationship between the armature current, i,(t), the applied armature

voltage, e,(t), and the back emf, v (1), 15 found by writing a loop equation around the Laplace transformed armature circuit

Rala(5) + LasIa(s) + Vb{-f} = Ea(s)

The torque developed by the motor is proportional to the armature current; thus,
Tm(s) = Kela(s)

where T, is the torgue developed by the motor, and K, is a constant of proportion-
ality, called the motor torque constant, which depends on the motor and magnetic
field characteristics. In a consistent set of umits, the value of K, is equal to the value of 41

(Ra + La-f} Tm'(s}
K,

+ K,56,u(5) = Eufs)




ELECTROMECHANICAL SYSTEM TRANSFER FUNCTION

Tt} 8(1)
frg
Dﬂ

FIGURE 2.36 Typical equivalent
mechanical loading on a motor

Tonls) = Ums® + DonS)6m(5)

(Ra + Las)(Jm5® + Dims)8m(s)
K;

T K.bs&m{'ﬂ = E,,{S)

[& (Jms+ Dy) + Kb] 6m(s) = Eals)

48
Om(s) K
E6) - G a)




ELECTROMECHANICAL SYSTEM TRANSFER FUNCTION

Motor

g, Dy

FIGURE 2.37 DC motor driving a rotational
mechanical load

B N2 Ny 2
T =Ta + 01 .h_;rz) TDm—Dﬂ“I-DL Fz)
with L, = 0,
R,

K, m{s} + Kb..!ﬂm(.!'} =; E.;{S}

Taking the inverse Laplace transform, we get

f:_: m{'r} + Kbmm {I) - 'En{'r)

a9




ELECTROMECHANICAL SYSTEM TRANSFER FUNCTION

and

Speed

FIGURE 2.38 Torque-speed curves with
an armature voltage, e,, as a parameter

The torque axis intercept occurs when the angular velocity reaches zero. That value of
torque 1s called the stall torque, Tqa. Thus,




ELECTROMECHANICAL SYSTEM TRANSFER FUNCTION

I :x-mple 2.23

Transfer Function—DC Motor and Load Virfual Expert i

PROBLEM: Given the system and torque-speed curve of Figure 2.39(a) and (&), Open-Loop

find the transfer function, & (5),/E.(s5). Servoe Motor
SOLUTION: Begin by finding the mechanical constants, J,, and D,,, in Eq. (2.153). i‘ng'“‘he‘“‘“dm’”‘“’?“;“j:?“ﬂm;
From Eq. (2.155), the total inertia at the armature of the motor is Rotary Servo System modeled

in LabVIEW. It is particulardy
i to know how a servo

T — Ta 7 (MY s 700( L) — 12 2.164
o= da T R =5+ a5 — 2. ]

and the total damping at the amature of the motor is

Y2 5
Dm:D,,q-D,_(Nz) :2+800(E) = 10 (2.165)

MNow we will find the electrical constants, K, /R, and K;. From the torgue-
speed curve of Figure 2.39(5b),

Toran = SO0 (2.166) irtual trmene are found
— s0 (2167} on WileyPLU!
ca — 100 (2.168)
T

Fixed

ficld s00

®, -
o %g en— 100V

Nyp= 100
ey

A= 1000 .
fo— 5 kg-m? .'$ Jp= TOD kg-m? = ey
D=2 Nom sfrad

Speed (rad/s)
Iy = BOO N-om sérad
e @)

Eats) | cosi7 | S
i EEEE O |

Len
FIGURE 2.39 a. DC motor and load; b. torque-specd curve: c. block diagram

Hence the electrical constants are

K. T sval S00
= — i 2169
R = 100 ¢ )

and
Ky=—"=—=2 (2.170)

Substituting Egs. (2.164), (2.165), (2.169), and (2.170) into Eq. (2.153) yield
O(s) 5/12 0417
E.(5) S{S " %{10 " (5)(2}]} 55+ 1.667)

(2.171)

In order to find #p(s)/Ea(s), we use the gear ratio, Ny /N2> = 1/10, and find

Or(s) _ 0.0417

E,(s) s(s+1.667) (2172)

as shown in Figure 2.39(c).




ELECTROMECHANICAL SYSTEM TRANSFER FUNCTION

wileyPLus

| WPCS J

Control Solutions

FIGURE 2.40 Eleciro-
mechanical system for
Skill- Assessment Exercise
211

@I siill-Assessment Exercise 2.11 JD

PROBLEM: Find the transfer function, G(s) = #r(s)/E;(s), for the motor and load
shown in Figure 2.40. The torque-speed curve is given by T, = — 8wy, + 200 when
the input voltage is 100 volts.

ext) | Motor Ny=20
Jy=1kgmz N2=100 Ny=25
D, =5N-m-s/rad ek s
N-i: 106 I.'ﬁ[ 5 %
3 T
. L
1/20
ANSWER: Gi(s) = — 12
)= 5+ 157

The complete solution is at www.wiley.com/college/nise.

92



ELECTRIC CIRCUIT ANALOG

An electric circuit that 15 analogous to a system from another discipline is
called an electric circuit analog. Analogs can be obtained by comparing the
describing equations, such as the equations of motion of a mechanical system,
with either electrical mesh or nodal equations. When compared with mesh
equations, the resulting electrical circuit is called a series analog. When com-
pared with nodal equations, the resulting electrical circuit is called a parallel
analog.

series Analog
i —+—= =0 & =

'
elf} J C
i

(a) &y

M I mass = M ——= inductor

viscous damper =, —— resistor
) + spring = K — = capacitor
finy ~ K .
it applied force = fif) — = wvoltage source
wvelocity = w(f) —m=

mesh current. = wir) c. series analog; d. parameters
(<) (dy for series analog

M henrnies

Jv ohms FIGURE 2.41 Development
1 farads of series analog: a. mechanical
;&} system: b. desired

electrical representation;

= a z 7
Consider the translational mechanical system shown in Figure » Whose equation of motion is

(Ms? + f.s + K)X(5) = F(s)

Kirchhoff’s mesh equation for the simple series RLC network shown in Figure 15

(Ls +R+ %) I(s) = E(s) 53

ng(s} s (Ms Lo %) V(s) = F(s)



ELECTRIC CIRCUIT ANALOG

(Y £xample 2.21 N

Converting a Mechanical System to a Series Analog
PROBLEM: Draw a series analog for the mechanical system of Figure

SOLUTION: Equations (2.118) are analogous to electrical mesh equations after
conversion to velocity., Thus,

[M,s F(y +F,) +(K“:J] Vils) - (f + %) Vals)=F(s)  (2176a)

~(tu ) Vi) + [Mas 1, 1) + B v =0 2176

Coefficients represent sums of electrical impedance. Mechanical impedances
associated with M, form the first mesh, where impedances between the two masses
are common to the two loops. Impedances associated with M, form the second
mesh. The result is shown in Figure 2.42, where v, (f) and v2(t) are the velocities of
My and M>, respectively.

1 1
M, Ky Jyy M K3

— 0000 —

00 . =5

FIGURE 2.42 Series analog of 1

mechanical system of Vi) T K il
Figure 2.17(a) 54




ELECTRIC CIRCUIT ANALOG

Parallel Analog
i)
iw(}) c= R L
(B)
® mass = M — capacitor = M farads
Vit
i : 1
d = — = — pohi
N e E™™  FGURE243 Development of
fit) " Gl 5 1 upking— & inductor =i hensiey parallel ann]o.g: a. mmm
™ b K applied force = fi) — = current source = fi1) system; b d.esm:d electrical
representation; ¢. parallel
velocity =v(f) —= node voltage = wvli) analog; d. parameters for
i ol parallel analog

(_ﬂs + %+ LLE)E(S] = I{s)




ELECTRIC CIRCUIT ANALOG

Y ol 2.25

Converting a Mechanical System to a Parallel Analog

PROBLEM: Draw a parallel analog for the mechanical system of Figure

SOLUTION: Equation (2.176) s ako analogous to electrical node equations. Coeffi-
cients represent sums of electrical admittances Admittances associated with M, form
the elements connected to the first node, where mechanical admittances between the
two masses are common to the two nodes Mechanical admittances associated with M-
form the elements connected to the second node. The result is shown in Figure 2.44,

where vi(¢) and v () are the velocities of M; and M, respectively.

V) i) 1’1{”

L} FIGURE 2.44 Parallel
analog of mechanical system
of Rgure 2.17(a)

=
b
P
=
=

() M= f%, xll




